THE VISCOSITY OF AN ORIENTED SOLUTION

N. I. Insarova UDC 532.135

The effects of oriented linear macromolecules are examined in relation to the viscosity of
a polymer solution in simple shear and in axially symmetric extension. The effective
viscosity is calculated for a solvent containing uniformly distributed rigid rods oriented
along the tension axis.

The flow laws for polymer solutions indicate that the rheological behavior is dependent on the mode
of deformation because flow causes structural rearrangement, e.g., orientation and deformation of the
macromolecules, reversible or irreversible damage, or formation of supermolecular structures. Orienta-
tion is the simplest and most natural consequence here.

Here I compare two modes of deformation frequently used: axially symmetric extension and simple
shear. In the first case, the preferred orientation always coincides with the shear direction, while in the
second the molecules in the limit lie in shear planes, which lie at n/4 to the tersion direction, i.e., the
orientations in these two cases are substantially different as regards the relation to the principal axes of
the strain tensor, which is especially important in relation to viscosity effects in such symptoms. A medium
containing oriented chains should show induced viscosity anisotropy dependent on the flow.

The effective viscosity of a macromolecular solution increases with the deformation rate in tension
but decreases in simple shear. These opposing effects can be considered as due to marked viscosity an-
isotropy. Thepolymer has least effect on the viscosity for shear in planes parallel to the preferred orien-
tation [1], while it is probably largest for axially symmetric tension.

We consider these effects via the corresponding simple hydrodynamic problem on the basis of the
following model. The solvent (viscosity 7y) contains uniformly distributed rigid cylindrical rods (ength I,
radius ry, I » 1) oriented along the z axis (see [2] for the viscosity of a dilute suspension of viscoelastic
spheres). The solvent adhered to the rods, i.e., the speed of the solvent at the surface of a rod equals the
speed of the rod itself. The medium on average is subject to axially symmetric strain along the z axis with
a strain rate k;.

Consider the motion of the solvent near a rod via the equations of hydrodynamics:
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where p is pressure; we neglect gravitational and inertial forces. Let the axis of the rod coincide with the
z axis. We seek a solution for the radial component of the velocity of the solvent in the form

v, =0, (r)- (4)
Then (3) gives the velocity component along the z axis as

v,=u(rz (5)
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where

We eliminate the pressure from (1) and (2), and then use (4) and (5) to show that for v, (ry) = vz(r =1y =0
we have

v, = {Mo (*—rd —i—xlnL] 2.

Ty

Here 1, should be zero because 0v,/dr — 0 as V — =. The velocity distribution is
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where 1 is a constant to be determined. The action radius R is the distance out to which the flow of the
solvent is governed by the rod, which is defined by (ry/ R)? = ¢, where c is the volume concentration of the
rods. We note that R < I /2 and that the model does not describe the behavior of solutions whose concen~
trationis ¢ = (21:‘0/1)2 or less. The mean strain rate k; can be put as

2
Fo =~z *®

and substitution from (6) gives

ky=n% {h’x%—%Jr—é (%)2]=%[c——1nc—1]. (8)
Weputy =1/(c —lnc —~1) to get from (8) that
% = 2kyy, (9)
where v is dependent only on the bulk concentration.

From (7) and (9) we get the shear stress at the surface of a rod as
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Then the force extending a rod in the z section is
/2
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2
Note that F(z) is not dependent on the radius of the rod and is dependent only on! and the proportion of the
volume filled by the rods. The F(z) averaged over the rod length is
1
FaV= ? mlokoleo

From (6) and (7) we get the viscous tensile force Fy for the solvent in a cylinder of radius R:

F, — 6 mnoky [RZ nR_ —;« R+ % rg] 3 ankoR2.
7,
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The following is the stress in the medium averaged over the volume with allowance for the forces in the
rods:

Fyo+ Fy 1 132
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From (12) we see that the rods, when completely oriented in the tension direction, give an effective vis-
cosity
1 1\2
Megg =3 M| I+ — v [— ] |,
9 Iy
i.e., the viscosity is increased by a factor 1 + (1/9)yc(/ry)?. As would be expected, the precise effect
from the oriented rods is dependent on ¢ and on?/r.

The calculations show, for example, that ¢ = 0.01 and I/r;, =100 (a reasonable figure for a polymer)
imply a viscosity increased by a factor 4 in tension, or by a factor 80 in ¢ = 0.1,

The viscosity is increased on account of a marked increase in the true strain rate in the solvent
relative to the mean strain rate for the medium as a whole. This may produce nonlinearity in the relation
of strain rate to stress for the solvent, which results in nonnewtonian flow of the medium as a whole at
comparatively low average strain rates.

NOTATION
z is the direction of stretching;
My is the viscosity of solvent;
I, ry are the length and radius of rod;
k, is the averaged deformation rate of medium;
p is the pressure;
Vy, Vz are the velocity components of solvent;
7 is the constant;
c is the volume concentration of rods;
R is the distance at which the rod affects solvent flow;
Tpg is the shear stress at rod surface;
F(z) is the tensile force;
Foy — F(2) is the force averaged along rod length;
Fy is the tensile force for solvent;
Tavy is the averaged stress in medium;
Neff is the effective viscosity of medium.
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